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1 Review of Hodge and de Rham cohomology
Let k be a field, and let X/k be a smooth proper variety. Recall that we have a complex of
abelian sheaves, the de Rham complex of X/k,

OX = Ω0
X/k → Ω1

X/k → Ω2
X/k → · · · → Ωn

X/k → 0, (1)

where Ωi
X/k is the ith exterior power of the sheaf of k-linear Kähler differentials on X and

n = dimX. Each term of this is a finite-rank locally free OX-module, but the maps are only
k-linear. Taking compatible injective resolutions of the sheaves Ωi

X/k gives a spectral sequence

Ei,j
1 = Hj(X,Ωi

X/k) =⇒ Hi+j(X,Ω•X/k) =: H i+j
dR (X/k). (2)

Terminology: we call the k-vector spaces H i,j(X/k) := Hj(X,Ωi
X/k) the Hodge cohomology of

X/k; we call the right-hand side the de Rham cohomology of X/k; and we call this spectral
sequence the Hodge-de Rham spectral sequence.

Its E1-page looks like:
. . .

H1(OX) //

E0

OO

E2

**

H1(Ω1
X) // · · ·

H0(OX) // H0(Ω1
X) // · · ·

We note four important facts about the Hodge numbers hi,j = dimkH
i,j(X/k):

Fact 1 (Finiteness): Each hi,j <∞.

Fact 2 (Serre duality): We have hi,j = hn−i,n−j for n = dimX.
∗Notes for a talk in Berkeley’s student arithmetic geometry seminar. Main reference: Illusie, “Complexe de

de Rham-Witt et cohomologie cristalline”.
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Fact 3 (Hodge symmetry): If char k = 0, then hi,j = hj,i.

Fact 4 (Degeneration): If char k = 0, the Hodge-de Rham spectral sequence degenerates at
E1, so in particular

∑
i+j=n h

i,j = hndR for all n.

2 Review of the de Rham-Witt complex
From now on, k will be a perfect field of characteristic p, W = W (k), and σ : W → W the
Witt vector Frobenius. The de Rham-Witt complex of X/k, first constructed by Illusie in 1979,
is designed to lift Ω•X/k to characteristic 0, and thereby to compute crystalline cohomology. It
is defined as the initial object in a rather complicated category. Rather than giving its full
definition, I will just outline what kinds of structure it has, and some of the key conditions we
impose. It contains the data:

...

R
����

...

R
����

W2OX d //

R
����

W2Ω
1
X

d //

R
����

· · ·

W1OX d //W1Ω
1
X

d // · · ·

Here eachWnΩi
X is a sheaf ofWnOX-modules, withWnk-linear differentials and vertical quotient

maps. (The bottom row is just the de Rham complex of X, and the leftmost column is the
sheaf of Witt vectors of OX .) Additionally, each row has a multiplication map making it a
cdga. Finally, each column has maps F going down and V going up, satisfying the following
relations:

(a) FV = V F = p

(b) dF = pFd, V d = pdV , FdV = d,

(c) F (aω) = σ(a)F (ω) and V (aω) = σ−1(a)V (ω) for a ∈ W ,

and various others.

Remark: WnΩi
X can be viewed as a sheaf on the Witt scheme WnX, which is a nilpotent

thickening of X. In fact it’s quasicoherent on WnX. But we usually view it as a sheaf of
Wn-modules on X, which has the same underlying topological space.

The complex WΩ•X is defined as lim←WnΩ•X . The F, V, and d operators and the multipli-
cation map pass to the inverse limit, and they have the same relations as above. Given WΩ•X
with all of these operators, we can recover WnΩ•X as its quotient by the images of V n and dV n.
In practice, we pass betweenWΩ•X and (WnΩ•X)n more or less freely, but one must be somewhat
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cautious about what operations do and don’t commute with the limit.

Remark: Under our smoothness hypotheses, WΩ•X turns out to be p-torsion-free. Then each
of the relations in (b) above is equivalent to saying that the map ϕ defined by piF on WΩi

commutes with d. This is useful because it means the operator ϕ will pass to everything in the
next section, including Hodge-Witt and crystalline cohomology, and all of the maps that come
up will be compatible with ϕ.

Theorem: The hypercohomology of the de Rham-Witt complex computes crystalline coho-
mology. More precisely, we have isomorphisms

H∗cris(X/Wn) ∼= H∗(WnΩ•X) (3)
H∗cris(X/W ) ∼= H∗(WΩ•X). (4)

Remark: There are some subtleties passing between these two statements. The main trick is
to show that certain Ri lim’s vanish by the Mittag-Leffler condition.

3 Slope spectral sequence
Definition: The Hodge-Witt cohomology of X/k is the sheaf cohomology Hj(WΩi

X).

Theorem: TheW -moduleHj(WΩi
X) is finite mod torsion, and comes with a σ-semilinear Frobe-

nius ϕ. Moreover, Hj(WnΩi
X) is a finite-lengthWn-module, and Hj(WΩi

X) = lim←H
j(WnΩi

X).

As before, we have a spectral sequence, called the slope spectral sequence,

Ei,j
1 = Hj(WΩi

X) =⇒ Hi+j(WΩ•X) = H i+j
cris (X/W ), (5)

computing hypercohomology. This need not degenerate at E1, but it gives a filtration (the slope
filtration) on each Hn

cris(X/W ) whose graded pieces are the subquotients Ei,j
∞ of Hj(WΩi

X),
where i+ j = n. (The subobjects appear in the bottom right, and the quotients in top left.)

Let me briefly explain the “slope” terminology. The un-divided Frobenius ϕ mentioned earlier
induces operators ϕ on each Hj(WΩi). These are Frobenius-semilinear maps of W -modules.
Ignoring torsion, any such object has a collection of slopes, which are the semilinear analogues
of p-adic valuations of eigenvalues.1 Since the divided Frobenius F satisfies FV = p, with V
topologically nilpotent, it must have all its slopes in [0, 1). It follows that ϕ = piF on Hj(WΩi

X)
has slopes in [i, i+ 1). So if we ignore torsion and assume the spectral sequence degenerates at
E1, the induced filtration on H∗cris(X/W ) keeps track of the slopes of ϕ, or more precisely the
floors of the slopes. In fact this discussion implies the following theorem:

Theorem (Illusie): The slope spectral sequence degenerates at E1 mod torsion.

1The literal meaning of this is given by the Dieudonné-Manin classification of Dieudonné modules over
W (k)[1/p].
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Proof: All Ei,j
1 have ϕ operators with slopes in [i, i + 1), and all differentials respect ϕ. It

follows that the Ei,j
n for n ≥ 1 inherit ϕ, also with slopes in [i, i+ 1), and also commuting with

differentials. But the differentials on page E1 and beyond go between modules with no slopes
in common, so they’re 0 mod torsion.

Remark: We’ve now seen that finiteness and E1-degeneration are true for Hodge-Witt co-
homology mod torsion. Hodge symmetry and Serre duality fail even in the absence of torsion.
We will see an example at the end that illustrates everything that can go wrong.

4 First examples

4.1 Gm and A1

Let’s write down the de Rham-Witt complex of X = Gm = SpecA, A = k[t±1]. This is
something that can be done entirely by hand, as Illusie does (and as I have done with Bhatt-
Lurie-Mathew’s construction). But the full calculation is a bit tedious, so I’ll just give you the
result along with a rough plausibility argument. I’ll write down the global sections of WΩi

X ,
from which one can calculate the global sections of WnΩi

X , and these determine the sheaf be-
cause it is quasicoherent when viewed as a sheaf on the affine scheme WnX.

Let’s first write down a reasonable guess for what W (A) might look like. It should contain
W [t±1], where t is the Teichmüller lift of t ∈ A. This ring has an obvious lift of Frobenius,
given by t 7→ tp and the Witt vector Frobenius on coefficients. But the Verschiebung should
send tα to ptα/p in order to get FV = V F = p. So we must adjoin pntm/pn for all m ∈ Z and
n ≥ 0. The resulting ring is almost right, but isn’t complete. In fact, W (A) is equal to the
V -adic completion (equivalently, coefficient-wise p-adic completion) of this ring:

W (A) = (W [t±1, pntm/p
n

: m ∈ Z, n ≥ 0])̂V ←↩ W [t±1, pntm/p
n

]←↩ W [t±1] (6)
F (tα) = tpα, (and σ on coefficients) (7)

V (tα) = ptα/p. (8)

This is (the global sections of) WOX . As for WΩ1
X , we have:

WΩ1
X = W [t±1/p

∞
]̂ · dt

t
, (9)

F

(
tα
dt

t

)
= tpα

dt

t
, (10)

V

(
tα
dt

t

)
= ptα/p

dt

t
. (11)

(We choose dt/t as our basis to make the formulas for F and V look nicer.) The differential
d : WOX → WΩ1

X sends tα to αtαdt/t, as one would expect. For future reference, we rewrite
this as follows:

WΩ•Gm
(Gm) =

⊕̂
α∈Z[1/p]

(∗)α →
⊕̂

α∈Z[1/p]
W · tαdt

t
, (12)
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where

(∗)α =

{
W · tα if α ∈ Z,
pnW · tα if α = m/pn, p - m,

(13)

(The completion in degree 1 is a little more subtle than that in degree 0, since we are completing
with respect to the image of dV n as well as V n. This is needed for the differential to be defined.
But this won’t matter for us.)

The de Rham-Witt complex of A1 is the same, except that in degree 0 the sum is over
α ∈ Z[1/p]≥0, and in degree 1 it is over α ∈ Z[1/p]>0. (Sanity check for degree 1: dt = t1dt/t,
so V n(dt) = pnt1/p

n
dt/t.)

4.2 Example: P1

Now let X = P1. Let’s calculate the slope spectral sequence for X. To compute the E1 page,
we need to take the sheaf cohomology of each WΩi

X . We do this using the Čech cover by
U1 = P1−{0} and U2 = P1−{∞}. We saw above that we have:

WΩ•X(U1 ∩ U2) =
⊕̂

α
(∗)α →

⊕̂
α
W · tαdt

t
, (14)

WΩ•X(U1) =
⊕̂

α≥0
(∗)α →

⊕̂
α>0

W · tαdt
t
, (15)

WΩ•X(U2) =
⊕̂

α≤0
(∗)α →

⊕̂
α<0

W · tαdt
t
. (16)

It follows that we have:

H1(WOX) = 0, H1(WΩ1
X) = W · dt

t
, (17)

H0(WOX) = W, H0(WΩ1
X) = 0. (18)

Remark: One may ask why this sheaf cohomology can be computed on as Čech cohomology.
One way to justify this (although probably not the only way): if we repeat the calculation with
WnΩ•X , then we’re computing the sheaf cohomology of a quasicoherent sheaf onWnX, and Čech
cohomology accomplishes this. We then use the fact that Hj(WΩi

X) = lim←H
j(WnΩi

X).

The spectral sequence clearly degenerates, so we have computed the crystalline cohomology
of P1. We also get the Frobenius action, given by ϕ = σ on H0 and ϕ = pσ on H2.

5 Example: abelian surfaces
To illustrate the behavior of the slope spectral sequence in a more typical example, let’s study
what the Hodge-Witt cohomology of an abelian surface looks like.
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There are three types of abelian surfaces in characteristic p, determined by the slopes of Frobe-
nius on H1

cris: either 0, 0, 1, 1 (ordinary); 0, 1/2, 1/2, 1; or 1/2, 1/2, 1/2, 1/2 (supersingular).2
Since H∗(X) = Λ∗H1(X) for X an abelian variety, this determines the slopes of ϕ on H i:
namely, the slopes on H i are the sums of i distinct slopes on H1. The crystalline cohomology of
any abelian surface looks like W ⊕W 4⊕W 6⊕W 4⊕W , and in the supersingular case, all of the
slopes on each H i are i/2. This tells us exactly what the slope filtration is, which determines
the description below of Hodge-Witt cohomology up to torsion.

k[[x]] k[[y]]⊕W⊕4 W
W⊕4 W⊕6 0
W 0 0

(19)

The curveball (which happens only in the supersingular case) comes inH2(WOX) andH2(WΩ1
X).

We get infinitely much p-torsion in both of these places, killed by a nonzero differential on the
E1 page. The spectral sequence then runs out of torsion and degenerates at E2.

2All of these can realized by products of two elliptic curves, depending on whether the factors are ordinary
or supersingular.

6


